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Conserved lattice gas model with infinitely many absorbing states in one dimension
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The conserved lattice gas model with infinitely many absorbing states is studied on a chain and on a ladder.
In both one-dimensional lattices it exhibits a phase transition from an absorbing phase to an active state. The
model defined on a chain is solved exactly and shows a critical behavior with classical critical exponents.
However, the model defined on a ladder shows a critical behavior, obtained from numerical simulation, that
places the model in the same universality class as the Manna model.
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I. INTRODUCTION absorbing state, when a particle is added, is taken as a mea-

Lattice models have been widely used to describe selfSUré of the lifetime of an avalanche.
organized criticalit(SOO. Among them the sandpile mod- Studies o_f the continuous time version of the CLG model
els, which include the models introduced by Bak, Tand, andn hypercubic lattice of dimension$=2, 3, 4, and 39] have
Wiesenfeld[1], by Dhar[2], and by Manng3], have at- given evidence that it belongs to the same universality class
tracted attention for being models which exhibit SOC prop-as the Manna model. However, in a one-dimensional chain
erties. Other similar models include the activated randonthe CLG model does not show the critical behavior we
walkers model[4,5], sandpile models with height restrictions Would expect for a model in the Manna universality class.
[6], and the threshold transfer proc¢#s8]. Another class of Actually, on a chain the CLG model exhibits a classical criti-
models exhibiting SOC properties is the class of the exclucal behavior as we show here by exactly solving the model
sion models in which at most one particle may occupy a sité13]. By classical behavior we mean the same behavior ob-
of the lattice. In this class we find the conserved lattice gagained when a mean-field treatment is used. The exact solu-
(CLG) models[7,9]. tion on a chain is carried out here by showing that all con-

The basic ingredient that relates these models to SOC igurations of the active state are equally probable
the presence of infinitely many absorbing stafé®,11.  constituting in this sense a microcanonical ensemble. By
Other lattice gas models show infinitely many absorbingchanging to a grand canonical ensemble the model can then
states such as the pair contact proddsd. The main prop- be exactly solved by means of a transfer matrix technique.
erty that distinguishes the CLG models is the conservation of he exponent related to the order parameter was found to be
particles and for this reason they are also known as fixedthe classical one, namef§=1.
energy sandpile models. The CLG model is defined on a Nonclassical critical behavior can, however, be found in
lattice where active particles may jump to neighboring emptyone dimension by defining the CLG model in another lattice.
sites. A particle is active if it has at least one of its nearesfn a ladder, for instance, we have found, by numerical simu-
neighbor sites occupied. Only active particles are allowed tdations, a nonclassical critical exponent. The exponent re-
move. Isolated particles do not move and a state made up bgted to the order parameter was found tod»e0.40(1) con-
isolated particles is therefore an absorbing state. If the nunsistent with a model belonging to the Manna universality
ber of particles is low enough then the model exhibits manyclass[5,6,8].
absorbing states. As we vary the number of particles the
CLG model exhibits a continuous phase transition from an
absorbing state to an active state where the number of active Let us consider a one-dimensional chain wlitlsites and
particles is nonzero. periodic boundary conditions. Each site can be empty or oc-

The connection between SOC and models with infinitelycupied by just one particle. The total number of particles is
many absorbing states such as the CLG model can be undéx: The particles are classified according to the occupancy of
stood as follows. The process is started in a finite lattice withts two nearest neighbor sites. If both sites are empty the
a certain number of particles. If there are no active particleparticle is said to be isolated; if both sites are occupied the
or if the system falls into an absorbing configuration then gparticle is blocked; and if one site is empty and the other
particle is added to the system. If there are active particlesccupied the particle is active. The dynamical rules are as
the process is run until a particle falls off the lattice. Thefollows. At each time step a particle is chosen at random. If
mechanism of adding and removing particles is repeated seitis an active particle it is moved to the empty nearest neigh-
eral times. This procedure, which is actually used in SOChor site. Isolated and blocked particles do not move. The
models, amounts to removing a particle if the system is irpossible transitions are as follows:
the active state and introducing a particle if the system is in
the absorbing state, driving thugs thr:a system towa>r/d the criti- 110— 101, 011-101, @)
cal state. An avalanche corresponds to the moves of the aand they have the same rates. Empty and occupied sites are
tive particles. The time it takes for the system to fall into anrepresented by 0 and 1, respectively.

Il. CLG MODEL ON A CHAIN
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Let us examine the evolution of the number of nearesest neighbor pair of occupied sites. In other wodg, is a
neighbor pairs of occupied sitd§; and the number of near- conserved quantity. Indeed, for the 1V states only the transi-
est neighbor pairs of empty sitég,. According to the rules tions in Eq.(3) are effective and these two transitions con-
these numbers never increase. To prove this property it iserve the number of 11 pairs. To calculdg, we can use
enough to look at the possible transitions related to four sitetherefore any configuration. The simplest configuration is the
in a row. They are one in which the particles are either isolated or belong to a

single cluster with more than one particle. This cluster has

1100 1010, 001%- 0101, (2) (N;;+1) particles so that the number of isolated particles

must be(L-N;;—2)/2. The sum of these number equals the
11011011, 101%- 1101, ©) number of particledN so thatN;;=(2N-L). The density of

and they have all the same rates. The transitions in(Bq. 11 pairspi;=Ny/L is related to the density of particlgs
conserve the number of 11 pairs whereas the transitions in N/L by
Eq. (2) decreases the number of 11 pairs as well as the num- —25-1 4)
ber of 00 pairs. pu=ep— L

To proceed in our analysis, we have to distinguishThe quantityp;; may be understood as an order parameter in
whether the number of particlés is smaller or larger than \hich case it follows that the critical density ggs=1/2 and
half the number of siteg. In the first caseN<L/2, it is  the critical exponenB=1.
always possible to set up absorbing configurations by spread- | et us consider a given IV configuration and denote by
ing out the particles over the lattice so that any particle be\ the number of cluster of particles of more than one par-
isolated. Absorbing states are stable against a perturbation ftle. Only the first and the last particle of a cluster are active
which a particle is moved next to another one. Indeed, thiparticles. The other particles of the cluster are blocked par-
perturbation will create a 11 pair and a 00 pair next to eachicles. Therefore the number of active partichég=2Nc is
other, but the rules2) will destroy both pairs reestablishing twice the number of clusters. It is easy to see that the number
the absorbing state. We may conclude that,Ne¥L/2, the  of pairs of nearest neighbor occupied sitég is related to
quantityN,; decreases and vanishes in the stationary absorth and to the total number of blocked particldg by N;;
ing state, whereasly, decreases but remains finite in the =Ng+N¢. Therefore Ng+N,/2 is a conserved quantity
stationary absorbing state. within the subspace of IV states. Althoutyh; is a conserved

In the second case, namély>L /2, there is no absorbing quantity within the subspace of the IV states, the nunier
configurations. Any stationary state is active because the sygf active particles is not. To determiné, as a function of

tem has always at least one pair of nearest neighbor occupigle number of particledl we will examine the properties of
sites, and therefore at least two active particles. In this casgqe |V states.

N,, decreases but must remain finite in the stationary state.
On the other hand\y, decreases and we assume it vanishes
in the stationary state. This amounts to saying that the sta-
tionary state is devoid of pairs of nearest neighbor empty To determine the properties of active state of the CLG
sites. We call these states iSOlated-Vaca('lM/) states. If model in a chain it is convenient to Change from the en-
such a state is perturbed by moving a particle in a way that 8emple with a fixed number of particle to a grand canonical
pair of nearest neighbor empty sites be created then accordnsemble with fluctuating number of particles. To this end
ing to rules in Eq(2) the IV state will be restored. we introduce the grand canonical partition function

IV. GRAND-CANONICAL ENSEMBLE

lIl. ACTIVE STATE Z=> W2, (5
n

Within the subspace of IV states, the pertinent rules are
those corresponding to the two transitions given in &.  Wherez is the activity andW, denotes the number of IV
These two transitions transform a given IV state into anothegonfigurations withn particles. Whem<L/2, W,=0. The
IV state. Since they are reverse of each other and have tH@obability of a IV configurationC in the grand canonical
same rate, the process is microscopically reversioleys ensemble is
detailed balangewithin the subspace of IV states. It follows
immediately that the stationary probability is the same for all P(C) = Ezn, (6)
IV configurations with the same number of particles. Since VA
any IV configuration can be reached from any other by the . . . -
rulgs, then aglll IV configurations with a given anber Of);)ar_vyheren is the number of particles id. The partition func-
ticles make up the stationary state, with the same probabilit)}.'on Z can be calculated by
In other words the IV configurations make up a Gibbs mi- 7= 7 7)
crocanonical ensemble with a fixed number of particles. &

In the regimeN>L/2, the configurations that are not IV
are transient and the stationary active state is constituted byhere the summation is over all IV configuratin
IV states only. An important property of the IV states is that To calculatedZ we use the transfer matrix approach ac-

all IV states withN particles have the same number of near-cording to whichZ is given by
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Z=TrTt. (8

The elements of the transfer matfixconnects two consecu-
tive sites of the lattice. Since IV configurations have no
double vacancy it follows thak,,=0. The other elements are
T11=2, T1o=Vz, andTy;= \z. The eigenvalues of th€ are

i:Zi \222+4z, ©

so that
Z=nL+L (10)
The density of particlesp is obtained by p

=(1/L)zd In Z/ 9z which, in the thermodynamic limit, gives
the following relation betweep andz

I+l 11

_ Ll z
Net2 2 2 VNz+4

p (1)

so that the critical density,=1/2 isreached wher— 0. Let
us determine the densipy, of the pairs 11 which is also the
probability P,;. Since Py;+P1p=P; and P;y+Pg=P,, and
taking into account thaPy,=0 it follows thatP,;=2P;-1,
that is, p11=2p—1 which is the result already obtained.

To determine the density, of active states we calculate
the probability P19 and use the relationp,=Pq10+Po11
=2P4,0 This probability is given by

1
P110= > TrQRT-2, (12)

where the matrice® andR are such that their only nonzero
entries areQ;;=T;; and R;g=T;o. Computing the trace we

get, in the thermodynamic limit, the following relation be-
tweenp, andz

2\,

S DN+ 2) 13
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FIG. 1. Densityp, of active particles as a function of the density
p of particles for the CLG model defined on a chain and on a ladder.
It is shown the exact resulfi4) for the chain and numerical simu-
lations on a lattice of siz&=2000 for the ladder.

=X

given the exponent=1/2.
V. CRITICAL STATE AND AVALANCHES

1

525

1

p-=

> (16)

The avalanches that are connected to SOC correspond to
moves of active particles in the critical state. In the super-
critical regime the moves never stop if the system is infinite.
If the system is finite particles will eventually fall off, driv-
ing the system to the critical state by decreasing the number
of particles. In the subcritical regime the lifetime will be
finite. In this case a particle is added to the system driving it
to the critical state by increasing the number of particles. The
relevant moves, an avalanche, are then those moves occur-

The relation between the density of active particles and theing ot the critical state. The probability density of the life-

density of particles is then

2
pa=;(2p-1)(l—p), (14
and is shown in Fig. 1. Therefore the order parameter
vanishes at the critical densip.=1/2 with an exponeniB
=1. It is worth mentioning that the density of blocked par-
ticles p,=p11—pa/2 is given by

1
Pp = ;(2;)— 1)?, (15)

times, at the critical point, behaves as

P(t) ~t™« (17)

for large values of.

To determine the probabiliti?(t) for the CLG model in a
chain we proceed as follows. The critical state occurs when
N=L/2, where we are assuming that the number of dités
even. In this case the stationary state is an absorbing con-
figuration in which the particles occupy every other site of
the chain so that all particles and all vacancies are isolated.
The system is perturbed by moving a particle to one of its
nearest neighbor empty site so that it will be close to another

so that it becomes negligible as we approach the critical derparticle. These two particles become active and the system

sity p.=1/2.

The correlation lengtlg can also be determined from the
ratio between the two eigenvalues Bf It is given by &+
=[In|]\_|/\,|. As one approaches the critical poiat- 0, we
geté=z"12 s0 that

evolves in time until the originally perturbed particle comes
back to its original site. The perturbed critical state consists
of just one pair of active particles that follows a random

walk. In one dimension the time it takes for a walker to

return to its original place is distributed according to
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P(t) ~ t™12 (18) -1

which is then identified with the distribution of the lifetime
of the avalanches. Therefore=1/2.

VI. CLG MODEL ON A LADDER -15 -

The CLG model defined on a chain is such that an active
particle has always just one neighboring empty site. It is
possible to relax this constraint while still remaining in one
dimension by studying the CLG model on a ladder. Each site
of the ladder has three nearest neighbor sites so that an activ
particle may have one or two neighboring empty sites. We
have performed numerical simulations with dynamical rules
defined as follows. At each time step a particle is selected a
random. If it is active, then it is moved, with equal probabil-
ity, to one of the three neighboring sites. If the chosen neigh-2° 7 5 5 = 4 = 3 =
boring site is already occupied the move is not carried out In{p-p,)
and the particle remains in its place.

In Fig. 1 we show a plot of the density of active particles  FIG. 2. Log-log plot of the density, of active particles as a
as a function of the density of particles for a ladder with sizefunction of the deviation of the densigyof particles from its criti-
L=2000. The critical density was obtained by assuming theal valuep. for the CLG model defined on a ladder. Several trial
behaviorp,~ (p—pc)?. A log-log plot of p, vs p for several Vvalues ofp; are shown. The best fitting to a straight line giyes
trial values ofp, will determined the critical value. The best =0-4755 and3=0.40.
fitting to a.strallght Ilne.glve$>c=Q.47552) a”?' ,8=0.4(Il) critical behavior that puts this model in the same universality
as shown in Fig. 2. This numerical value gfis consistent 555 as the Manna model.
with corresponding values of other one-dimensional models |t js worth mentioning that it is possible to define
in the universality class of the Manna mod#|6,8|. d-dimensional models with properties similar to the CLG
chain model studied here. This may be done, for instance, in
ad-dimensional hypercubic lattice, by defining an active par-
ticle as the one which has all but one nearest neighbor sites

We have studied one-dimensional CLG models defined omccupied. An active particle has just one way out of its place.
a chain and on a ladder. We have shown that the stationarjhe active state will then be composed by isolated vacancy
active state of the chain model is made up of configurationgonfigurations. The quantitiesl,, and N;; will decreases
devoid of pairs of nearest neighbor empty sites. The emptynonotonically, the first vanishing in the active state, the sec-
sites shows up only as isolated vacancies. This property isnd in the absorbing state. In the stationary state, these re-
sufficient to show that all configurations of this type arestricted models defined ondadimensional hypercubic lattice
equally probable defining thus a Gibbs microcanonical enare equivalent to an equilibrium system of hard-core par-
semble. The change to a grand-canonical ensemble alloweitles in which a particle excludes the presence of particles
then an exact solution which reveals a critical behavior withon its nearest neighbor sites. The equivalence is established
classical exponents. The numerical investigation of theby mapping the empty site of the restricted CLG model into
model CGL defined on a ladder, on the other hand, reveals a hard-core particle.
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