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The conserved lattice gas model with infinitely many absorbing states is studied on a chain and on a ladder.
In both one-dimensional lattices it exhibits a phase transition from an absorbing phase to an active state. The
model defined on a chain is solved exactly and shows a critical behavior with classical critical exponents.
However, the model defined on a ladder shows a critical behavior, obtained from numerical simulation, that
places the model in the same universality class as the Manna model.
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I. INTRODUCTION

Lattice models have been widely used to describe self-
organized criticalitysSOCd. Among them the sandpile mod-
els, which include the models introduced by Bak, Tand, and
Wiesenfeldf1g, by Dhar f2g, and by Mannaf3g, have at-
tracted attention for being models which exhibit SOC prop-
erties. Other similar models include the activated random
walkers modelf4,5g, sandpile models with height restrictions
f6g, and the threshold transfer processf7,8g. Another class of
models exhibiting SOC properties is the class of the exclu-
sion models in which at most one particle may occupy a site
of the lattice. In this class we find the conserved lattice gas
sCLGd modelsf7,9g.

The basic ingredient that relates these models to SOC is
the presence of infinitely many absorbing statesf10,11g.
Other lattice gas models show infinitely many absorbing
states such as the pair contact processf12g. The main prop-
erty that distinguishes the CLG models is the conservation of
particles and for this reason they are also known as fixed-
energy sandpile models. The CLG model is defined on a
lattice where active particles may jump to neighboring empty
sites. A particle is active if it has at least one of its nearest
neighbor sites occupied. Only active particles are allowed to
move. Isolated particles do not move and a state made up by
isolated particles is therefore an absorbing state. If the num-
ber of particles is low enough then the model exhibits many
absorbing states. As we vary the number of particles the
CLG model exhibits a continuous phase transition from an
absorbing state to an active state where the number of active
particles is nonzero.

The connection between SOC and models with infinitely
many absorbing states such as the CLG model can be under-
stood as follows. The process is started in a finite lattice with
a certain number of particles. If there are no active particles
or if the system falls into an absorbing configuration then a
particle is added to the system. If there are active particles
the process is run until a particle falls off the lattice. The
mechanism of adding and removing particles is repeated sev-
eral times. This procedure, which is actually used in SOC
models, amounts to removing a particle if the system is in
the active state and introducing a particle if the system is in
the absorbing state, driving thus the system toward the criti-
cal state. An avalanche corresponds to the moves of the ac-
tive particles. The time it takes for the system to fall into an

absorbing state, when a particle is added, is taken as a mea-
sure of the lifetime of an avalanche.

Studies of the continuous time version of the CLG model
in hypercubic lattice of dimensionsd=2, 3, 4, and 5f9g have
given evidence that it belongs to the same universality class
as the Manna model. However, in a one-dimensional chain
the CLG model does not show the critical behavior we
would expect for a model in the Manna universality class.
Actually, on a chain the CLG model exhibits a classical criti-
cal behavior as we show here by exactly solving the model
f13g. By classical behavior we mean the same behavior ob-
tained when a mean-field treatment is used. The exact solu-
tion on a chain is carried out here by showing that all con-
figurations of the active state are equally probable
constituting in this sense a microcanonical ensemble. By
changing to a grand canonical ensemble the model can then
be exactly solved by means of a transfer matrix technique.
The exponent related to the order parameter was found to be
the classical one, namelyb=1.

Nonclassical critical behavior can, however, be found in
one dimension by defining the CLG model in another lattice.
On a ladder, for instance, we have found, by numerical simu-
lations, a nonclassical critical exponent. The exponent re-
lated to the order parameter was found to beb=0.40s1d con-
sistent with a model belonging to the Manna universality
classf5,6,8g.

II. CLG MODEL ON A CHAIN

Let us consider a one-dimensional chain withL sites and
periodic boundary conditions. Each site can be empty or oc-
cupied by just one particle. The total number of particles is
N. The particles are classified according to the occupancy of
its two nearest neighbor sites. If both sites are empty the
particle is said to be isolated; if both sites are occupied the
particle is blocked; and if one site is empty and the other
occupied the particle is active. The dynamical rules are as
follows. At each time step a particle is chosen at random. If
it is an active particle it is moved to the empty nearest neigh-
bor site. Isolated and blocked particles do not move. The
possible transitions are as follows:

110→ 101, 011→ 101, s1d

and they have the same rates. Empty and occupied sites are
represented by 0 and 1, respectively.
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Let us examine the evolution of the number of nearest
neighbor pairs of occupied sitesN11 and the number of near-
est neighbor pairs of empty sitesN00. According to the rules
these numbers never increase. To prove this property it is
enough to look at the possible transitions related to four sites
in a row. They are

1100→ 1010, 0011→ 0101, s2d

1101→ 1011, 1011→ 1101, s3d

and they have all the same rates. The transitions in Eq.s3d
conserve the number of 11 pairs whereas the transitions in
Eq. s2d decreases the number of 11 pairs as well as the num-
ber of 00 pairs.

To proceed in our analysis, we have to distinguish
whether the number of particlesN is smaller or larger than
half the number of sitesL. In the first caseN,L /2, it is
always possible to set up absorbing configurations by spread-
ing out the particles over the lattice so that any particle be
isolated. Absorbing states are stable against a perturbation in
which a particle is moved next to another one. Indeed, this
perturbation will create a 11 pair and a 00 pair next to each
other, but the ruless2d will destroy both pairs reestablishing
the absorbing state. We may conclude that, forN,L /2, the
quantityN11 decreases and vanishes in the stationary absorb-
ing state, whereasN00 decreases but remains finite in the
stationary absorbing state.

In the second case, namelyN.L /2, there is no absorbing
configurations. Any stationary state is active because the sys-
tem has always at least one pair of nearest neighbor occupied
sites, and therefore at least two active particles. In this case,
N11 decreases but must remain finite in the stationary state.
On the other hand,N00 decreases and we assume it vanishes
in the stationary state. This amounts to saying that the sta-
tionary state is devoid of pairs of nearest neighbor empty
sites. We call these states isolated-vacancysIV d states. If
such a state is perturbed by moving a particle in a way that a
pair of nearest neighbor empty sites be created then accord-
ing to rules in Eq.s2d the IV state will be restored.

III. ACTIVE STATE

Within the subspace of IV states, the pertinent rules are
those corresponding to the two transitions given in Eq.s3d.
These two transitions transform a given IV state into another
IV state. Since they are reverse of each other and have the
same rate, the process is microscopically reversiblesobeys
detailed balanced within the subspace of IV states. It follows
immediately that the stationary probability is the same for all
IV configurations with the same number of particles. Since
any IV configuration can be reached from any other by the
rules, then all IV configurations with a given number of par-
ticles make up the stationary state, with the same probability.
In other words the IV configurations make up a Gibbs mi-
crocanonical ensemble with a fixed number of particles.

In the regimeN.L /2, the configurations that are not IV
are transient and the stationary active state is constituted by
IV states only. An important property of the IV states is that
all IV states withN particles have the same number of near-

est neighbor pair of occupied sites. In other words,N11 is a
conserved quantity. Indeed, for the IV states only the transi-
tions in Eq.s3d are effective and these two transitions con-
serve the number of 11 pairs. To calculateN11 we can use
therefore any configuration. The simplest configuration is the
one in which the particles are either isolated or belong to a
single cluster with more than one particle. This cluster has
sN11+1d particles so that the number of isolated particles
must besL−N11−2d /2. The sum of these number equals the
number of particlesN so thatN11=s2N−Ld. The density of
11 pairsr11=N11/L is related to the density of particlesr
=N/L by

r11 = 2r − 1. s4d

The quantityr11 may be understood as an order parameter in
which case it follows that the critical density isrc=1/2 and
the critical exponentb=1.

Let us consider a given IV configuration and denote by
NC the number of cluster of particles of more than one par-
ticle. Only the first and the last particle of a cluster are active
particles. The other particles of the cluster are blocked par-
ticles. Therefore the number of active particlesNA=2NC is
twice the number of clusters. It is easy to see that the number
of pairs of nearest neighbor occupied sitesN11 is related to
NC and to the total number of blocked particlesNB by N11
=NB+NC. Therefore NB+NA/2 is a conserved quantity
within the subspace of IV states. AlthoughN11 is a conserved
quantity within the subspace of the IV states, the numberNA
of active particles is not. To determineNA as a function of
the number of particlesN we will examine the properties of
the IV states.

IV. GRAND-CANONICAL ENSEMBLE

To determine the properties of active state of the CLG
model in a chain it is convenient to change from the en-
semble with a fixed number of particle to a grand canonical
ensemble with fluctuating number of particles. To this end
we introduce the grand canonical partition function

Z = o
n

Wnz
n, s5d

where z is the activity andWn denotes the number of IV
configurations withn particles. Whenn,L /2 , Wn=0. The
probability of a IV configurationC in the grand canonical
ensemble is

PsCd =
1

Z
zn, s6d

wheren is the number of particles inC. The partition func-
tion Z can be calculated by

Z = o
C

zn, s7d

where the summation is over all IV configurationC.
To calculatedZ we use the transfer matrix approach ac-

cording to whichZ is given by
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Z = Tr TL. s8d

The elements of the transfer matrixT connects two consecu-
tive sites of the lattice. Since IV configurations have no
double vacancy it follows thatT00=0. The other elements are
T11=z, T10=Îz, andT01=Îz. The eigenvalues of theT are

l± =
z± Îz2 + 4z

2
, s9d

so that

Z = l+
L + l−

L. s10d

The density of particles r is obtained by r
=s1/Ldz] ln Z/]z which, in the thermodynamic limit, gives
the following relation betweenr andz:

r =
l+ + 1

l+ + 2
=

1

2
+

1

2
Î z

z+ 4
, s11d

so that the critical densityrc=1/2 isreached whenz→0. Let
us determine the densityr11 of the pairs 11 which is also the
probability P11. Since P11+P10=P1 and P10+P00=P0, and
taking into account thatP00=0 it follows that P11=2P1−1,
that is,r11=2r−1 which is the result already obtained.

To determine the densityra of active states we calculate
the probability P110 and use the relationra=P110+P011
=2P110. This probability is given by

P110=
1

Z
Tr QRTL−2, s12d

where the matricesQ andR are such that their only nonzero
entries areQ11=T11 and R10=T10. Computing the trace we
get, in the thermodynamic limit, the following relation be-
tweenra andz:

ra =
2l+

sl+ + 1dsl+ + 2d
. s13d

The relation between the density of active particles and the
density of particles is then

ra =
2

r
s2r − 1ds1 − rd, s14d

and is shown in Fig. 1. Therefore the order parameterra
vanishes at the critical densityrc=1/2 with an exponentb
=1. It is worth mentioning that the density of blocked par-
ticles rb=r11−ra/2 is given by

rb =
1

r
s2r − 1d2, s15d

so that it becomes negligible as we approach the critical den-
sity rc=1/2.

The correlation lengthj can also be determined from the
ratio between the two eigenvalues ofT. It is given by j−1

= ulnul−u /l+u. As one approaches the critical point,z→0, we
get j=z−1/2 so that

j =
1

2
Sr −

1

2
D−1/2

, s16d

given the exponentn=1/2.

V. CRITICAL STATE AND AVALANCHES

The avalanches that are connected to SOC correspond to
moves of active particles in the critical state. In the super-
critical regime the moves never stop if the system is infinite.
If the system is finite particles will eventually fall off, driv-
ing the system to the critical state by decreasing the number
of particles. In the subcritical regime the lifetime will be
finite. In this case a particle is added to the system driving it
to the critical state by increasing the number of particles. The
relevant moves, an avalanche, are then those moves occur-
ring at the critical state. The probability density of the life-
times, at the critical point, behaves as

Pstd , t−a s17d

for large values oft.
To determine the probabilityPstd for the CLG model in a

chain we proceed as follows. The critical state occurs when
N=L /2, where we are assuming that the number of sitesL is
even. In this case the stationary state is an absorbing con-
figuration in which the particles occupy every other site of
the chain so that all particles and all vacancies are isolated.
The system is perturbed by moving a particle to one of its
nearest neighbor empty site so that it will be close to another
particle. These two particles become active and the system
evolves in time until the originally perturbed particle comes
back to its original site. The perturbed critical state consists
of just one pair of active particles that follows a random
walk. In one dimension the time it takes for a walker to
return to its original place is distributed according to

FIG. 1. Densityra of active particles as a function of the density
r of particles for the CLG model defined on a chain and on a ladder.
It is shown the exact results14d for the chain and numerical simu-
lations on a lattice of sizeL=2000 for the ladder.
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Pstd , t−1/2 s18d

which is then identified with the distribution of the lifetime
of the avalanches. Thereforea=1/2.

VI. CLG MODEL ON A LADDER

The CLG model defined on a chain is such that an active
particle has always just one neighboring empty site. It is
possible to relax this constraint while still remaining in one
dimension by studying the CLG model on a ladder. Each site
of the ladder has three nearest neighbor sites so that an active
particle may have one or two neighboring empty sites. We
have performed numerical simulations with dynamical rules
defined as follows. At each time step a particle is selected at
random. If it is active, then it is moved, with equal probabil-
ity, to one of the three neighboring sites. If the chosen neigh-
boring site is already occupied the move is not carried out
and the particle remains in its place.

In Fig. 1 we show a plot of the density of active particles
as a function of the density of particles for a ladder with size
L=2000. The critical density was obtained by assuming the
behaviorra,sr−rcdb. A log-log plot of ra vs r for several
trial values ofrc will determined the critical value. The best
fitting to a straight line givesrc=0.4755s2d and b=0.40s1d
as shown in Fig. 2. This numerical value ofb is consistent
with corresponding values of other one-dimensional models
in the universality class of the Manna modelf5,6,8g.

VII. CONCLUSION

We have studied one-dimensional CLG models defined on
a chain and on a ladder. We have shown that the stationary
active state of the chain model is made up of configurations
devoid of pairs of nearest neighbor empty sites. The empty
sites shows up only as isolated vacancies. This property is
sufficient to show that all configurations of this type are
equally probable defining thus a Gibbs microcanonical en-
semble. The change to a grand-canonical ensemble allowed
then an exact solution which reveals a critical behavior with
classical exponents. The numerical investigation of the
model CGL defined on a ladder, on the other hand, reveals a

critical behavior that puts this model in the same universality
class as the Manna model.

It is worth mentioning that it is possible to define
d-dimensional models with properties similar to the CLG
chain model studied here. This may be done, for instance, in
a d-dimensional hypercubic lattice, by defining an active par-
ticle as the one which has all but one nearest neighbor sites
occupied. An active particle has just one way out of its place.
The active state will then be composed by isolated vacancy
configurations. The quantitiesN00 and N11 will decreases
monotonically, the first vanishing in the active state, the sec-
ond in the absorbing state. In the stationary state, these re-
stricted models defined on ad-dimensional hypercubic lattice
are equivalent to an equilibrium system of hard-core par-
ticles in which a particle excludes the presence of particles
on its nearest neighbor sites. The equivalence is established
by mapping the empty site of the restricted CLG model into
a hard-core particle.
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FIG. 2. Log-log plot of the densityra of active particles as a
function of the deviation of the densityr of particles from its criti-
cal valuerc for the CLG model defined on a ladder. Several trial
values ofrc are shown. The best fitting to a straight line givesrc

=0.4755 andb=0.40.
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